Abstract

Poly(vinyl alcohol)–zinc selenide (PVA–ZnSe) nanocomposite films have been prepared, which offer higher effective permittivity than pure PVA. There is an about 2.5-fold increase (at 420 K) in the effective permittivity at 100 kHz for the 4 wt % ZnSe nanostructure impregnated PVA film as calculated from the dielectric reinforcement function. Prevailing relaxation mechanisms in the nanocomposite films, within the frequency range of 100 Hz ≤ f ≤ 1 MHz and in the temperature range of 298 ≤ T ≤ 420 K, have been discussed on the basis of available theoretical approaches in the literature. AC conductivity behavior reveals that correlated barrier hopping is the ac charge transport mechanism for the nanocomposite films, and the maximum barrier heights vary inversely with the weight percent inclusion of ZnSe nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.