Abstract

In ceramic BaTiO3 thin film prepared by chemical solution deposition, the influence of small grain size (10–150 nm) and grain boundaries on ferroelectric behavior is investigated by the studies of low‐frequency dielectric response. The apparent permittivity is suggested to result from an ensemble of grains possessing different properties and volume fractions, and having a nonferroelectric boundary layer. The effective permittivity of the boundary layer is found to be close to that of an interfacial layer in epitaxial thin‐film ferroelectrics, indicating possible fundamental resemblance of these layers. The maximum effective permittivity of the grain interiors is estimated to be about 1500. The observed small intrinsic grain permittivity, small Curie constant, broad dielectric peaks, and high‐temperature dielectric hysteresis are discussed in terms of size‐induced changes of the phase diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.