Abstract

Complex permittivity spectra of binary mixtures of varying concentrations of [Formula: see text]-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity ([Formula: see text]), high frequency limit permittivity ([Formula: see text]) and the relaxation time ([Formula: see text]) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity ([Formula: see text]) and the excess inverse relaxation time (1/[Formula: see text] which contain information regarding molecular structure and interaction between polar–polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich–Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol–fraction of MeOH at all temperatures. The values of excess static permittivity ([Formula: see text]E) and the excess inverse relaxation time (1/[Formula: see text] are negative for the studied [Formula: see text]-picoline — MeOH system at all temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call