Abstract

Dielectric switches have drawn renewed attention to the study of their many potential applications with the adjustable switch temperatures (Ts ). Herein, a novel antimony-based halide semiconductor, (N,N-diisopropylethylamine) tetrachloroantimonate ((DIPEA)SbCl4 , DIPEA+ =N,N-diisopropylethylamine), with dielectric relaxation behavior and dielectric switches has been successfully synthesized. This compound, consisting of coordinated anion chains and isolated DIPEA+ cations, undergoes an isostructural order-disorder phase transition and shows a step-like dielectric anomaly, which can function as a frequency-tuned dielectric switch with highly adjustable switch temperature (Ts ). Variable-temperature single-crystal structure analyses and first-principles molecular dynamics simulations give information about the general mechanisms of molecular dynamics. This work enriches the dielectric switch family and proves that hybrid metal halides are promising candidates for switchable physical or chemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.