Abstract
Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD)2ClO4]n, 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I41/amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO4- anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.