Abstract

The dielectric constant ɛ and loss tangent tanδ of Sr3CuNb2O9 perovskite ceramics prepared by solid-state reactions have been measured at temperatures from 300 to 900 K and frequencies from 25 to 1 × 106 Hz. The results demonstrate that the samples slowly cooled from the temperature of the final, high-temperature firing (1200°C) have relatively low permittivity (ɛ ≃ 10) and dielectric losses (tanδ ≃ 0.005 at 1 kHz) at room temperature, with no strong dielectric dispersion and no prominent maxima in the temperature dependences of their permittivity and dielectric loss. The ceramics quenched from 1300°C exhibit a pronounced Debye-type low-frequency relaxation and strong dielectric dispersion in conjunction with high permittivity ɛ ≃ 2000 at low frequencies and/or high temperatures. The observed dielectric anomalies in the Sr3CuNb2O9 ceramics can be understood in terms of Maxwell-Wagner relaxation at dielectric inhomogeneities associated with the quenching-induced difference in oxygen-vacancy concentration between the grain bulk and surface layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.