Abstract

Interfacial compatibility is a crucial factor to the performance of wood-plastic composites (WPCs). Yet, so far, the coupling mechanisms of WPC have not been completely understood. In order to further clarify the interfacial coupling mechanism, the dielectric constant and dielectric loss factor of Simon poplar wood flour/polypropylene composites without additives at different wood contents were measured at oven-dry state, and parameters and thermodynamic quantities of the relaxation process were also analyzed and calculated. Consequently, an obvious relaxation process based on the reorientation of methanol groups in amorphous region of wood cell wall was observed exactly that its dielectric loss factor peak decreased with the decreasing wood content within the measured range of 50%–100%. With the trend of dielectric relaxation strength, the two changing trends both revealed that the existence of polypropylene could hinder reorientation of methanol groups. Following the decreasing wood contents, the effect of the hindrance on the dielectric properties turned obvious gradually. It elucidated that introduction of polypropylene caused the quantities of hydrogen bonds formed between each methanol group and the groups around it change. The same conclusion could be drawn from the analysis of thermodynamic quantities during the dielectric relaxation progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.