Abstract
For polymer composites to be used in electronic packaging, they must have a good combination of thermal and dielectric properties. A composite of aluminum-nitride (AlN) particles dispersed around polystyrene matrix particles has been synthesized in this study. The purpose of using this microstructure is to improve the thermal properties of the polymer at the low-filler content with a minimal increase in the dielectric constant of the polymer composite. The dielectric relaxation behavior of polystyrene–AlN composites has been investigated with broadband dielectric relaxation spectroscopy. The experimental results indicate that the dielectric property of polystyrene–AlN composites is a function of polystyrene particle size, AlN filler concentration, temperature, and frequency under this dispersion state. The dependence of Maxwell–Wagner–Sillars or interfacial polarization of polystyrene–AlN composites on AlN volume fraction has also been studied. The Davidson–Cole equation is used to fit the experimental Cole–Cole plot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.