Abstract
Dielectric properties are the most important parameters determining energy deposition when biological tissues are exposed to radio frequency and microwave fields. Energy absorption is determined by the specific absorption rate (SAR). SAR distributions can be computed accurately only if the complex relative permittivity of the target tissue is known to a sufficiently high accuracy, and currently there is a lack of data on the dielectric properties of biological tissues at high frequencies. In this study, tissue dielectric properties are measured using an open-ended coaxial probe technique from 500 MHz up to 40 GHz. We present dielectric data for ex vivo bovine and porcine muscle and liver tissues at 37 °C. One-pole Cole–Cole model is used to fit the measured data as a function of frequency and the dispersion parameters are presented. This data is supported by an accurate study on reference liquids such as methanol and ethanediol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.