Abstract
Quantitative phase imaging (QPI) enables nondestructive, real-time, label-free imaging of transparent specimens and can reveal information about their fundamental properties such as cell size and morphology, mass density, particle dynamics, and cellular fluctuations. Development of high-performance and low-cost quantitative phase imaging systems is thus required in many fields, including on-site biomedical imaging and industrial inspection. Here, we propose an ultracompact, highly stable interferometer based on a single-layer dielectric metasurface for common path off-axis digital holography and experimentally demonstrate quantitative phase imaging. The interferometric imaging system leveraging an ultrathin multifunctional metasurface captures image plane holograms in a single shot and provides quantitative phase information on the test samples for extraction of its physical properties. With the benefits of planar engineering and high integrability, the proposed metasurface-based method establishes a stable miniaturized QPI system for reliable and cost-effective point-of-care devices, live cell imaging, 3D topography, and edge detection for optical computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.