Abstract

Moiré superlattices have become a fertile playground for topological Chern insulators, where the displacement field can tune the quantum geometry and Chern number of the topological band. However, in experiments, displacement field engineering of spontaneous symmetry-breaking Chern bands has not been demonstrated. Here in a rhombohedral trilayer graphene moiré superlattice, we use a thermodynamic probe and transport measurement to monitor the Chern number evolution as a function of the displacement field. At a quarter filling of the moiré band, a novel Chern number of three is unveiled to compete with the well-established number of two upon turning on the electric field and survives when the displacement field is sufficiently strong. The transition can be reconciled by a nematic instability on the Fermi surface due to the pseudomagnetic vector field potentials associated with moiré strain patterns. Our work opens more opportunities to active control of Chern numbers in van der Waals moiré systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.