Abstract

The optical dielectric functions for polarization perpendicular and parallel to the c-axis (optical axis) of pulsed-laser-deposition grown wurtzite MgxZn1−xO (0⩽x⩽0.29) thin films have been determined at room temperature using ellipsometry for photon energies from 1 to 5 eV. The dielectric functions reveal strong excitonic contributions for all Mg concentrations x. The band gap energies (E0A=3.369 eV for ZnO to 4.101 eV for x=0.29) show a remarkable blueshift. The exciton binding energy (61 meV for ZnO) decreases to approximately 50 meV for x≈0.17 and increases to approximately 58 meV for x=0.29. In contrast to ZnO, the MgxZn1−xO alloys are found uniaxial negative below the band gap energy, opposite to previously reported results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call