Abstract

In this paper, we have presented a theoretical study of the optical properties for the cubic MgxZn1−xO (x = 0.0, 0.125, 0.375, 0.625, 0.875 and 1.0) alloys using the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The local density approximation (LDA) was applied to calculate the structural properties. In order to explore the desired properties, the MgxZn1−xO alloys were modeled at various x compositions from 0.0 to 1.0 by step of 0.125. The recently modified semi-local Becke-Johnson potential with LDA correlation in the form of mBJ-LDA was used to predict the energy band gap, optical dielectric function, refractive index, absorption coefficient, reflectivity, optical conductivity and the electron energy loss of MgxZn1−xO alloys. The obtained results show good agreement with the experimental data, which indicate that the investigated ternary alloys are among promising material for the fabrication of electronic, optoelectronic devices and their applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.