Abstract

In this article, an underlap silicon n-channel Tunnel Field Effect Transistor (n-TFET) i.e., symmetric single-k spacer (SSS) Double Gate N-TFET (DGTFET) is proposed to improve the performance of the device by using different spacer materials. A detailed investigation has been made on the proposed device characteristics with the help of extensive 2-D TCAD simulations. It is demonstrated that an optimized underlap length is chosen for a significant on-state current (Ion) without deteriorating the off-state current (Ioff) and sub-threshold swing (SS). The proposed model with different spacer materials has been extensively analyzed by using transfer characteristics, output characteristics, and analog/RF characteristics. The structure is optimized based on the comparison among various performance metrics like Ion, Ioff, SS, on-off ratio (Ion/Ioff), threshold (or) cut-off frequency (fT), and intrinsic delay with considering different spacer materials like SiO2 (k = 3.9), Si3N4 (k = 7.5), and HfO2 (k = 25).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.