Abstract

Galactomannans are polysaccharides obtained from legume seed extraction. They present a chemical structure consisting of D-mannose chains linked by glycosidic bonds and galactose branches. The main focus lies in their use as thickeners in the food industry, aimed at improving the dielectric properties of food during heating processes within the radiofrequency and microwave ranges. In this work, the prepared galactomannan samples were electrically analyzed through impedance spectroscopy, which is a powerful physical technique. From the experimental measurements, the dielectric permittivity and loss tangent of the galactomannan solutions were analyzed and the electrical modulus formalism was used to study the dielectric relaxations. Crude galactomannans exhibited higher values of permittivity, conductivity, and losses compared to purified galactomannans. Increasing ethanol concentration in galactomannan purification causes an increase in the permittivity and conductivity of galactomannan solutions. In a 1% solution, at 1 kHz, the permittivity increased from 378.56 to 538.09, while in the 2% solution, this increase was from 656.22 to 1103.24. Regarding the conductivity, at the same frequency, the increase was from 1.6 × 10-3 to 3.3 × 10-3 Ω-1m-1 and from 2.9 × 10-3 to 5.5 × 10-3 Ω-1m-1, respectively. The rise of the ethanol concentration in galactomannan purification led to a decrease in the relaxation time, from 448.56 to 159.15 μs and from 224.81 to 89.50 μs in the solution with 1 and 2%, respectively. The results suggest that galactomannan from Adenanthera pavonina L. has potential for use in the food industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call