Abstract
Abstract Novel polyurethanes (PUs), based on oligo(oxytetramethylene glycol), 4,4’-diphenylmethanediisocyanate and 1,1-dimethylhydrazine as chain extender, were prepared in a two-step process. The ratio prepolymer (PP) to chain extender (CE) was systematically varied in extreme ranges, from 1:1 to 10:1. Dielectric relaxation spectroscopy and thermally stimulated depolarization currents (TSDC) techniques were employed to investigate molecular dynamics and to conclude on microphase separation (MS). In that respect TSDC was proven to be very powerful, in particular as far as the investigation of the interfacial Maxwell-Wagner-Sillars polarization is concerned. Additional information on micromorphology is obtained from water sorption/diffusion measurements. A part of the results suggest that MS improves with increasing the PP:CE ratio. The whole body of results can be explained if, at the same time, it is assumed that a branched structure is developed for samples out of stoichiometry and branching increases with increasing the PP:CE ratio. Preliminary experiments with solutions of the PUs in organic solvents provide support for that assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.