Abstract

AbstractDifferential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC) techniques, dielectric relaxation spectroscopy (DRS), and dynamic mechanical thermal analysis (DMTA), covering together a wide range of temperatures and frequencies, were employed to investigate molecular mobility and microphase separation in blends of crosslinked polyurethane (PUR) and styrene–acrylonitrile (SAN) copolymer, prepared by reactive blending with polymer polyols. The results by each technique indicate that the degree of microphase separation of PUR into hard‐segment (HS) microdomains and soft‐segment (SS) microphase increases on addition of SAN. The various techniques were critically compared to each other, with respect to their characteristic time and length scales, on the basis of activation diagrams (Arrhenius plots). The results show that for the dynamic glass transition of the PUR SS microphase the characteristic time scales at the same temperature are similar for DMTA, DSC, and TSDC and shorter for DRS. In terms of fragility, the PUR/SAN blends are classified as fragile systems. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1071–1084, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.