Abstract

Abstract Ni-Zn ferrite nanoparticles were synthesized via mechanical activation of Zn, NiO and Fe2O3 powders in a high energy planetary ball mill. The 30 h-milled samples in argon, oxygen and air atmospheres were pressed in pellet and toroid shape form and were sintered from 500 °C to 900 °C with 100 °C increments. The X-ray diffraction patterns results indicated a single phase Ni-Zn ferrite formation with a cubic-spinel structure in all the samples sintered at 500 °C. The milling atmosphere had a key role in the synthesis, microstructure and properties of the samples in such a way that this effect sustained even after the completion of sintering process. Thus, the main goal of this study is to scrutinize the effect of sintering temperature in the 30-h-milled samples in different atmospheres on DC electrical resistivity and dielectric behavior of Ni-Zn ferrite samples. The results indicated that although electrical resistivity decreased, dielectric behaviors, i.e. constant, loss and tan δ increased with increase in sintering temperature. The milled samples in argon had the highest resistivity of 1.2 × 106 Ωcm at 500 °C, and lowest dielectric constant and loss ( ∼ 4.67 × 102 and 1.7 at 300 K and frequency 106 MHz, respectively) compared to other samples owing to more homogeneity and smaller average crystallite size, making them a good candidate for high frequency applications. X-ray photoelectron spectroscopy (XPS) revealed the presence of metal ions in their proper valence in the Ni-Zn ferrite crystal structure. Noticeably, a variation in the binding energy for the milled samples in different atmospheres is attributed to the changes in surroundings of Fe3+ and Zn2+/or Ni2+, due to non-equilibrium distribution of cations in tetrahedral and octahedral sites, which is further confirmed by the XRD patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call