Abstract

Previously, we demonstrated that the organochlorine pesticide dieldrin induces mitochondrial depolarization, caspase-3 activation and apoptosis in dopaminergic PC12 cells. We also demonstrated that protein kinase Cδ (PKCδ), a member of a novel PKC family of proteins, is proteolytically activated by caspase-3 to mediate apoptotic cell death processes. In the present study, we have further characterized the protective effect of the major mitochondrial anti-apoptotic protein Bcl-2 against dieldrin-induced apoptotic events in dopaminergic cells. Exposure to dieldrin (30–100 μM) produced significant cytotoxicity and caspase-3 activation within 3 h in vector-transfected PC12 cells, whereas human Bcl-2-transfected PC12 cells were almost completely resistant to dieldrin-induced cytotoxicity and caspase-3 activation. Also, dieldrin (30–300 μM) treatment induced proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), which was blocked by pretreatment with caspase-3 inhibitors Z-DEVD-FMK and Z-VAD-FMK. Additionally, dieldrin-induced chromatin condensation and DNA fragmentation were completely blocked in Bcl-2-overexpressed PC12 cells as compared to vector control cells. Together, these results clearly indicate that overexpression of mitochondrial anti-apoptotic protein protects against dieldrin-induced apoptotic cell death and further suggest that dieldrin primarily alters mitochondrial function to initiate apoptotic cell death in dopaminergic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call