Abstract

Previously, we demonstrated that the organochlorine pesticide dieldrin induces mitochondrial depolarization, caspase-3 activation and apoptosis in dopaminergic PC12 cells. We also demonstrated that protein kinase Cδ (PKCδ), a member of a novel PKC family of proteins, is proteolytically activated by caspase-3 to mediate apoptotic cell death processes. In the present study, we have further characterized the protective effect of the major mitochondrial anti-apoptotic protein Bcl-2 against dieldrin-induced apoptotic events in dopaminergic cells. Exposure to dieldrin (30–100 μM) produced significant cytotoxicity and caspase-3 activation within 3 h in vector-transfected PC12 cells, whereas human Bcl-2-transfected PC12 cells were almost completely resistant to dieldrin-induced cytotoxicity and caspase-3 activation. Also, dieldrin (30–300 μM) treatment induced proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), which was blocked by pretreatment with caspase-3 inhibitors Z-DEVD-FMK and Z-VAD-FMK. Additionally, dieldrin-induced chromatin condensation and DNA fragmentation were completely blocked in Bcl-2-overexpressed PC12 cells as compared to vector control cells. Together, these results clearly indicate that overexpression of mitochondrial anti-apoptotic protein protects against dieldrin-induced apoptotic cell death and further suggest that dieldrin primarily alters mitochondrial function to initiate apoptotic cell death in dopaminergic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.