Abstract

Diel patterns in survey trawl catches for the Cape hakes Merluccius capensis and M. paradoxus off Namibia were studied in order to examine the effect of diel bias on catchability, and its implication for survey abundance estimation and the consistency of the survey time-series. Catch rates (numbers per haul) by species and length from summer demersal biomass surveys conducted during the period 2002–2013 were used, together with a computation of the corresponding light-level data from which the solar zenith angles were obtained. Generalised additive models were fitted to assess the relationship between the catches and a number of explanatory variables. Significant covariates were zenith angle, depth and geographical position. The final models explained 78% and 59% of the variability in catch rates of M. capensis and M. paradoxus, respectively. For M. capensis, the response to zenith angle increased sharply for values above 100°, which represents the time between sunset and sunrise. For M. paradoxus there was a moderate increase in the response to zenith angle during the night. In cases where some fishing took place at night in shallow water, the survey results for M. capensis were more greatly affected than was the case for M. paradoxus, which is related to the different depth preference of the two species. Fishing in depths shallower than 400 m outside daylight hours should therefore be avoided in order to reduce bias and ensure consistency in abundance estimates from surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.