Abstract

The Lagrange-Dirichlet theorem states that the equilibrium position of a discrete, conservative mechanical system is stable if the potential energy U(q) assumes a minimum in this position. Although everything seems to indicate that the equilibrium is always unstable in case of a maximum of the potential energy, this has yet to be proven. In all existing instability theorems the function U(q) has to satisfy additional requirements which are very restrictive. In this paper instability is proved in the case of a maximum of U(q)eC 2, without further restrictions. The instability follows directly from the existence of certain types of motions which are not found as solutions of differential equations, but as the solutions of a variational problem. Existence theorems are given for the variational problem, based on a result found by Caratheodory. In similar way an “inversion” of Routh's theorem on the stability of steady motions in systems with cyclic coordinates is also given. The result obtained here is not as general as the inversion of the Lagrange-Dirichlet theorem because the equations of motion are of a more complex type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call