Abstract

Tumor angiogenesis is essential for invasive tumor growth and metastasis. Dickkopf-1 (DKK-1), an antagonist of Wnt signaling, participates in tumor development and progression. We evaluated whether DKK-1 stimulation induces angiogenesis and the endothelial–mesenchymal transition (EnMT).Human umbilical vein endothelial cells (HUVECs) were stimulated with recombinant DKK-1 (rDDK-1) or conditioned medium from a culture of DKK-1-transfected 293 cells. Following stimulation, the expression levels of angiogenesis-related factors and EnMT related markers were determined by immunoblot assays. In addition, the effects of exogenous DKK-1 on angiogenesis and EnMT were assessed by tube-formation, cell invasion, and wound-healing assays.Human hepatoma cells, such as Hep3B and Huh-7, showed high levels of DKK-1 expression, whereas 293 cells and HUVECs showed little or no DKK-1 expression. Increased endothelial cell tube formation and invasiveness were observed in HUVECs treated with concentrated conditioned medium from DKK-1-overexpressing 293 cells or rDKK-1. DKK-1-stimulated HUVECs also exhibited increased motility in wound-healing assays. Furthermore, the expression levels of angiogenesis-related factors, including vascular endothelial growth factor receptor 2 and vascular endothelial-cadherin, were increased in DKK-1-stimulated HUVECs. The expression of EnMT markers, such as vimentin and Twist, was also increased in DKK-1-stimulated HUVECs. However, no significant change in β-catenin or GSK3β expression was observed.Our in vitro data suggest that DKK-1 can enhance angiogenesis and EnMT by HUVECs independent of the Wnt signaling pathway. Modulation of DKK-1 expression may facilitate development of novel strategies to control tumor angiogenesis and metastasis.

Highlights

  • IntroductionDKK-1 acts as an inhibitory ligand of the low-density lipoprotein receptor-related protein 5/6 co-receptors and subsequently blocks their interaction with Wnt, resulting in β-catenin degradation [2]

  • Dickkopf-1 (DKK-1) is a potent antagonist of Wnt/ β-catenin signaling [1]

  • Tung et al reported that a DKK-1expressing hepatocellular carcinoma (HCC) cell line showed an increased microvessel density around tumors [13], while another study showed that DKK-1–mediated endothelial cell activation led to increased vascular density and vessel diameter in rats [14]

Read more

Summary

Introduction

DKK-1 acts as an inhibitory ligand of the low-density lipoprotein receptor-related protein 5/6 co-receptors and subsequently blocks their interaction with Wnt, resulting in β-catenin degradation [2] This inhibitory role of DKK-1 in Wnt/β-catenin signaling is supported by the downregulation of DKK-1 in human colon cancers and the correlation between high DKK-1 expression and favorable responses to chemotherapy in brain tumors [3]. Tung et al reported that a DKK-1expressing HCC cell line showed an increased microvessel density around tumors [13], while another study showed that DKK-1–mediated endothelial cell activation led to increased vascular density and vessel diameter in rats [14] These findings indicate that DKK-1 plays a role in microvascular remodeling and tumor angiogenesis activation, which may account for its promotion of cancer growth in vivo

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call