Abstract

We consider the “membrane in the middle” optomechanical model consisting of a laser pumped cavity which is divided in two by a flexible membrane that is partially transmissive to light and subject to radiation pressure. Steady state solutions at the mean‐field level reveal that there is a critical strength of the light‐membrane coupling above which there is a symmetry breaking bifurcation where the membrane spontaneously acquires a displacement either to the left or the right. This bifurcation bears many of the signatures of a second order phase transition and we compare and contrast it with that found in the Dicke model. In particular, by studying limiting cases and deriving dynamical critical exponents using the fidelity susceptibility method, we argue that the two models share very similar critical behaviour. For example, the obtained critical exponents indicate that they fall within the same universality class. Away from the critical regime we identify, however, some discrepancies between the two models. Our results are discussed in terms of experimentally relevant parameters and we evaluate the prospects for realizing Dicke‐type physics in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.