Abstract

In this study, the Cr(VI) metal ions have been removed from dichromate-contaminated water using a novel Azo Dye-Sulphonated Poly (glycidyl methacrylate) nano-composite adsorbent for the first time. Crystal violet Azo dye model (CV) has been immobilized onto nano-sulfonated Poly (glycidyl methacrylate) particles (SPGMA) through the adsorption process to obtain the novel crystal violet Azo Dye-Sulphonated Poly (glycidyl methacrylate) nano-composite adsorbent (CV-SPGMA). The effect of the adsorption conditions on the removal process of Cr (VI) metal ions such as dichromate concentration, adsorption time, temperature, pH, adsorbent dose, and finally agitation speed on the Cr(VI) metal ions removal was studied. The Cr(VI) metal ions removal process has been characterized using isotherms, kinetics, and thermodynamics models. The developed novel CV-SPGMA nano-composite adsorbent chemical structure and morphology were characterized using characterization tools such as FTIR, TGA, and SEM-EDAX analyses before and after the adsorption process. The developmentof the novel CV-SPGMA nano-composite adsorbent for the removal of Cr(VI) ions from dichromate-contaminated waters under mild adsorption conditions opens a new field of multiuse of the same adsorbent in the removal of more than one contaminant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.