Abstract

Hydrogen desorption from borohydrides is often accompanied by the release of diborane. The amount of diborane released as a byproduct during the decomposition of borohydrides scales inversely with the borohydride stability, which in turn depends on the electronegativity of the corresponding cation. We present a model based on the difference between the symmetric and asymmetric assembly of B(2)H(6) units at the surface. The origin of this reaction is the degree of distortion of the BH(4)(-) anions in the bulk, hitherto depending on the degree of ionization of the cation. A practical measure of the distortion is the range in which the stretching vibration modes appear, which is the difference in the energy of the stretching vibrations of hydrogen atoms with maximum different bonding lengths (Badger's rule). We propose from this relation that the diborane released from the surface of the relatively unstable LiZn(2)(BH(4))(5) is formed from a recombination of BH(2)(δ+) and BH(4)(δ-) units. Ultra high vacuum mass spectroscopy measurements support the presented model and clarify the decomposition of stable borohydrides, such as LiBH(4). The sublimation of borohydrides in UHV competes with their decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.