Abstract
Manganese borohydride Mn(BH4)2 powder is heated in a hydrogen atmosphere in vacuum. The long-range order in the structure is monitored in situ by means of X-ray absorption spectroscopy and X-ray diffraction; short-range order, via Mg K-edge X-ray absorption near-edge structure spectroscopy. Above 120°C, the X-ray diffraction pattern disappears and an irreversible phase transition occurs, accompanied by sample amorphization and profuse hydrogen desorption. In the hydrogen atmosphere, the phase transition occurs at a temperature of ∼110°C. The standard scheme of borohydride decomposition suggests hydrogen desorption and the formation of metallic manganese and boron. However, a theoretical analysis of X-ray absorption spectra shows that the most likely products of Mn(BH4)2 decomposition are manganese borides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Russian Academy of Sciences: Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.