Abstract

Carbon composite thermoplastic electrodes (TPEs) were fabricated using graphite, thermoplastic binder and solvent. TPEs were used due to their outstanding properties such as high conductivity, good electron transfer kinetics, inexpensive, easy patterning and reusability. TPEs were modified with aryl diazonium salts using p-nitroaniline for the first time. An in-situ modification method based on diazonium ion synthesis was developed for thermoplastic electrodes. A mixture of aryl amine, p-toluenesulfonic acid, and sodium nitrite in aquous phase was prepared and grinded together in order to synthesize diazonium salts. A color change (from green to yellow) of the synthesized paste occurred upon reaction, which indicated diazonium ion formation. 4-nitroaniline was used to synthesize and graft diazonium ion. In-situ generated nitrophenyl monodiazonium cations were electrochemically reduced to aminophenyl groups on the surface of the thermoplastic electrode. The presence of aminophenyl groups on the surface of the electrode was confirmed via electrochemistry. After electrochemical reduction in aqueous acidic media, the electrochemical behavior of a 4-aminophenyl modified thermoplastic electrode was investigated in the presence of ferricyanide. Characteristic peaks were obtained due to the formation of grafted groups on the electrode surface by cyclic voltammetry. The reduction of the 4-aminophenyl resulted in the product of amino groups at about -0.4 V versus Ag/AgCl reference electrode. A scan rate study was performed by modified TPEs and a linear dependence of the anodic peak current was observed up to 100 mV/s indicating that the electroactive species were grafted at the TPE surface. Furthermore, incubation time of synthesized diazonium salt on the electrode surface was optimized and found as 5 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.