Abstract

One of the major challenges confronting organic electronics is the development of high-mobility semiconducting materials, especially n-channel and ambipolar semiconductors. Solution-processable semiconducting polymers have attracted much attention because of their tunable properties and their suitability for the fabrication of large-scale devices. Aza substitution has proven effective in electron-transport small-molecule semiconductors; however, high-performance polymeric semiconductors prepared by aza substitution are still lacking. We started with a computational screening procedure to introduce nitrogen atoms into isoindigo-based polymers and then proceeded with the synthesis and fabrication of field-effect transistors. The resulting 7,7′-diazaisoindigo-based polymers exhibit extensive π conjugation and high crystallinity with hole mobilities exceeding 7 cm2 V–1 s–1 with bottom-gate/bottom-contact configuration and ambipolar transport properties with top-gate/bottom-contact configuration in air. These ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.