Abstract

Diaryltriazene derivatives were synthesized and evaluated for their antimicrobial properties. Initial experiments showed some of these compounds to have activity against both methicillin-resistant strains of Staphylococus aureus (MRSA) and Mycobacterium smegmatis, with MICs of 0.02 and 0.03 μg/mL respectively. Those compounds with potent anti-staphylococcal and anti-mycobacterial activity were not found to act as growth inhibitors of mammalian cell lines or yeast. Furthermore, we demonstrated that one of the most active anti-MRSA diaryltriazene derivatives was subject to very low frequencies of resistance at <10−9. Whole genome sequencing of resistant isolates identified mutations in the enzyme that lysylates phospholipids. This could result in the modification of phospholipid metabolism and consequently the characteristics of the staphylococcal cell membrane, ultimately modifying the sensitivity of these pathogens to triazene challenge. Our work has therefore extended the potential range of triazenes, which could yield novel antimicrobials with low levels of resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call