Abstract

Cantaloupe terrain on Neptune's large, icy satellite Triton comprises an organized cellular pattern of noncircular dimples that structurally and geologically most closely resemble salt diapirs exposed on Earth. The mean separation of these cells is 47 km. Modeling of the cells as compositionally driven diapirs suggests that cantaloupe terrain forms by gravity-driven overturn within an ice crust about 20 km thick with a maximum viscosity of 10 exp 22 Pa s. These diapirs probably formed as a result of a density inversion in a layered crust composed partly of ice phases other than water ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.