Abstract

Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.

Highlights

  • Diapause is a widespread strategy used by insects to overcome harsh conditions

  • Differences in life stage-specific developmental rates and diapausing life stages, result in different phenologies with potential varying effects on voltinism and population outbreak dynamics (Table 1). Both species can overwinter as a diapausing adult and, for I. typographus, this is the only life stage considered resistant to harsh winters

  • Facultative and obligate adult diapause phenotypes that vary geographically are assumed for I. typographus and have recently been found in D. rufipennis

Read more

Summary

Introduction

Diapause is a widespread strategy used by insects to overcome harsh conditions. An arrest of reproduction and direct development, a suppression of metabolism and an increased stress resistance are main characteristics of this dormancy type (Lees, 1956; Tauber & Tauber, 1976; Tauber et al, 1986; Danks, 1987; Denlinger, 2002; Koštál, 2006). Many bark beetle life history events are temperature-driven, including developmental rates and thresholds, survival, thresholds for the onset of swarming or feeding, and thermal sums to complete ontogenetic phases (Bakke, 1968; Bentz et al, 1991; Lobinger, 1994; Coeln et al, 1996; Wermelinger & Seifert, 1998, 1999; Doležal & Sehnal, 2007; Gent et al, 2017; Schebeck & Schopf, 2017).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call