Abstract

The results from a comprehensive investigation of the structure, phase and chemical composition, microhardness, and nanomechanical and tribological properties of chromium-doped coatings of hydrogenised amorphous carbon a-C:H:Cr are presented. The coatings are deposited via reactive magnetron sputtering in an Ar + C2H2 + N2 gas mixture at various volume concentrations of nitrogen and acetylene. It is found that the carbon in the coatings is formed as disordered mixtures of domains with tetrahedral (sp3) and hexagonal (sp2) carbon coordinations. In addition, the doping metal in the coating consists of nanosized inclusions of metallic chromium and its carbide and nitride phases. Additional nitrogen doping resulting in the formation of chromium nitride is shown to improve the micromechanical and tribological properties of the obtained coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call