Abstract

Ten individual gem-quality monocrystalline diamonds of known peridotite/eclogite paragenesis from Southern Africa (Koffiefontein, Letlhakane, Orapa) were studied for trace element concentrations and He and Ar abundances and isotopic compositions. In addition, two samples, consisting of pooled fragments of gem-quality peridotitic diamonds from Finsch and DeBeers Pool respectively, were analysed for noble gases. Previous studies (Richardson et al., 1984; Pearson et al., 1998; Gress et al., 2017; Timmerman et al., 2017) provided age constraints of 0.09, 1.0–1.1, 1.7, 2.3, and 3.2–3.4 Ga on mineral inclusions in the studied diamonds, allowing us to study trace elements and noble gases over 3 Gyr of geological time. Concentrations of trace elements in the diamonds are very low – a few hundred ppt to several tens of ppbs – and are likely dependent on the amount of sub-micron inclusions present. Trace element patterns and trace element/3He ratios of the studied monocrystalline diamonds are similar to those in fibrous diamonds, suggesting that trace elements and stable noble gas isotopes reside within the same locations in diamond and track the same processes that are reflected in the trace element patterns. We cannot discern any temporal differences in these geochemical tracers, suggesting that the processes generating them have been occurring over at least the past 2.3 Ga. 3He/4He ratios decrease and 4He and 40Ar* contents increase with increasing age of peridotitic and some eclogitic diamonds, showing the importance of in-situ radiogenic 4He and 40Ar ingrowth by the decay of U-Th-Sm and K respectively. For most gem-quality monocrystalline diamonds, uncertainties in the 3He/4He evolution of the continental lithospheric mantle combined with large analytical uncertainties and possible spatial variability in U-Th-Sm concentrations limit our ability to provide estimates of diamond formation ages using 4He ingrowth. However, the limited observed 4He ingrowth (low U + Th/3He) together with a R/Ra value of 5.3 for peridotitic diamond K306 is comparable to the present-day sub-continental lithospheric mantle value and supports the young diamond formation age found by Re-Os dating of sulphides in the same diamond by Pearson et al. (1998). After correction for in-situ radiogenic 4He produced since diamond formation a large variation in 3He/4He remains in ∼1 Ga old eclogitic diamonds that is suggested to result from the variable influence of subducted altered oceanic crust that has low 3He/4He. Hence, the 3He/4He isotope tracer supports an origin of the diamond-forming fluids from recycled oceanic crust for eclogitic diamonds, as indicated by other geochemical proxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call