Abstract

The chemical nature and composition of the growth medium of monocrystalline (MC) diamonds is still a matter of debate, partially because carbonate-bearing high-density fluids (HDFs) that are common in fibrous diamonds have not been found in MC diamonds. Here we report the first finding of HDF microinclusions in a MC octahedral diamond from Finsch, South Africa and in the MC octahedral core of a coated diamond from Kankan, Guinea; both diamonds carry nitrogen in B-centers.Numerous microinclusions in diamond Finsch_2a_cap1 are restricted to two thin layers parallel to the (111) face, ∼20 and 200μm from the diamond rim. Low-Mg carbonatitic HDFs are found along the inner layer while the outer layer trapped saline compositions. The major and trace element compositions of the inclusions and their infrared spectra are highly similar to those of microinclusions found in fibrous diamonds. A few isolated microinclusions of saline compositions are scattered around a sulfide inclusion in the center of the octahedral core of diamond ON-KAN-383.This evidence for the involvement of oxidized fluids in the formation of MC diamonds adds to previous reports on the antiquity of HDFs in fibrous diamonds, the presence of carbonate and halide phases in inclusions in MC diamonds and the similarity of trace element pattern of a MC diamond to those of low-Mg carbonatitic HDF in fibrous diamonds. In addition, we show that the interaction of HDFs with depleted garnets can produce sinusoidal REE patterns which are one of the primary features of lherzolitic and harzburgitic garnet inclusions in MC diamonds. Together, these observations suggest that HDFs are involved in the formation of many types of diamonds from the Archaean to the Phanerozoic. HDFs are trapped in large quantities during rapid, fibrous growth, but must also be present during the growth of many MC diamonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call