Abstract

Over the past few years a variety of diamond electron devices have been fabricated, analysed and simulated. This includes Schottky diodes on boron-doped p+ diamond substrates, boron/nitrogen pn-junction diodes, bipolar transistors based on this pn-junction and field effect transistors (FETs) with boron delta-doped channels and hydrogen-related surface conductive layers. Many of the fabricated devices considered here represent the current state-of-the-art in this field. This includes the operation of diamond Schottky diodes at temperatures of up to 1000 °C, as well as diamond FET devices with a cut-off frequency of 30 GHz and channel current densities of 300 mA mm−1. Simulations show that diamond boron delta-doped FETs might yield an RF-output power density of up to 30 W mm−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.