Abstract

Controlled preparation of nanoscale materials and the underlying mechanisms are essential issues nowadays. Here, we report a significant subtractive formation process of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negative biasing of the substrates, and the etching effect of energetic ions on the formation of diamond cone arrays with controlled morphology has been studied in detail. It shows that methylic ions dominantly contribute to diamond cone formation based on a neutral-ion charge exchange collision model. The self-organized selective sputtering process of as-formed hillock bottoms on a roughened surface by low energetic ions plays a key role for the formation and development of diamond cones. The cone morphologies under various experimental parameters are systematically studied, and they nicely confirm and supplement the as-established cone formation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.