Abstract
The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching process and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possibility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or a quantum device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.