Abstract
Compressive and diametral tensile strengths (DTSs) of core materials are thought to be important, because cores usually replace a large bulk of tooth structure and should provide sufficient strength to resist intraoral tensile and compressive forces. This study was undertaken to compare the mechanical properties of materials used for direct core foundations. The differences between the compressive and DTSs of six core materials, including Duralloy (high-copper amalgam), Grandio (visible light-cured nanohybrid resin composite), Admira (organically modified ceramic), Filtek P60 (packable composite resin), Rebilda DC (dual-cure adhesive core material), and Argion Molar (silver-reinforced glass ionomer cement), were tested. A total of 120 specimens, half for the compressive strength (CS) test (6 mm in height, 4 mm in diameter) and the other half for the DTS test (6 mm in diameter, 3 mm in thickness), were prepared. The specimens were stored at room temperature in distilled water for 7 days. The Lloyd testing machine was used to load the specimens at a crosshead speed 0.5 cm/min, and the strength values were determined in MPa. The compressive and DTS test values (in MPa), respectively, of the materials were: Admira (361, 44); Filtek P60 (331, 55); Grandio (294, 53); Rebilda DC (279, 42); Duralloy (184, 40); and Argion Molar (107, 9). Kruskal-Wallis test was computed, and multiple comparisons test discerned many differences among materials (p < 0.05). Packable composite resin (Filtek P60), visible light cured nanohybrid resin composite (Grandio), and organically-modified ceramic (Admira) had higher compressive and DTS values than the other materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have