Abstract

Arrays of polymer/SWCNT (single-wall carbon nanotube) nanowires supported on a residual nanocomposite film are prepared by melt wetting using porous anodic aluminum oxide (AAO) as a template. The aggregation parameter of SWCNTs extracted from the analysis of their Raman radial breathing modes gives the highest value for native SWCNTs, indicating that they tend to organize into bundles giving rise to a high degree of aggregation. However, the lowest value achieved at the interface between the nanocomposite film and the nanoarray is explained considering that the forces acting during infiltration are able to disrupt the SWCNT bundles inducing nanotube dispersion. In addition, scanning the nanoarrays along the nanowires length by Raman microscopy has shown a diameter selection of SWCNTs by the AAO membrane. The results reported in this work reveal that it is possible to fabricate arrays of nanowires with homogeneous SWCNT distribution along tens of microns, optimizing nanotube dispersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.