Abstract
Based on single-nanowire surface photovoltage measurements and finite-element electrostatic simulations, we determine the surface state density, N(s), in individual n-type ZnO nanowires as a function of nanowire diameter. In general, N(s) increases as the diameter decreases. This identifies an important origin of the recently reported diameter dependence of the surface recombination velocity, which has been commonly considered to be independent of the diameter. Furthermore, through the determination of the surface carrier lifetime, we suggest that the diameter dependence of the surface state density accounts for the rather abrupt transition from bulk-limited to surface-limited carrier transport over a narrow nanowire diameter regime (~30-40 nm). These findings are supported by the comparison between bulk-limited and surface-dependent minority carrier diffusion lengths measured at various diameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.