Abstract

The equilibrium compositions of coatings on single-wall carbon nanotubes were spectroscopically deduced for samples dispersed in dilute sodium dodecyl sulfate (SDS) and then exposed to low concentrations of ssDNA oligomers. With all studied oligomers, displacement of the SDS tended to occur at lower ssDNA concentrations for smaller diameter nanotubes than for larger diameter ones. However, the behavior varied significantly with oligomer. For example, the diameter dependence was steeper for (TAT)4 than for (ATT)4, suggesting that interstrand head-to-tail hydrogen bonding interactions play a role in SWCNT wrapping. Concentrations of ssDNA in the range of several μg/mL displace SDS from nanotubes dispersed in 1500 μg/mL SDS solutions. This effect allows the use of coating exchange to prepare ssDNA dispersions with minimal oligomer costs. Another demonstrated use exploits the structure-dependent relative coating affinities in a simple filtration method for the diameter enrichment of SWCNT mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call