Abstract

In microelectrical discharge machining (μEDM), the machining repeatability of microshafts with the same diameter is low due to the complex and stochastic nature of sparking. To improve machining repeatability, the effects of the main error sources on diameter accuracy of microshafts fabricated by wire electrical discharge grinding (WEDG) were analyzed. Strategies to minimize diameter differences between the target microshaft and the microshaft finally obtained by semifinishing and finishing were then proposed. Determining an appropriate infeed (depth of a cut) according to the desired erosion depth in the radial direction (ΔR) of microshafts was chosen as the control strategy for the semifinishing of microshafts produced by WEDG. To determine the infeed, empirical models that evaluate the relationship between the infeed and ΔR were developed through a large number of experiments. For the finishing of microshafts using WEDG, machining strategies such as zero infeed and stopping the wire electrode running, were proposed to eliminate some of the inherent errors. Finally, the empirical models developed for determining the infeed were verified by the successful fabrication of a stepped microshaft, which has small deviations from its desired diameters. By employing the developed empirical models and machining strategies, diameters of 26 out of 28 microshafts fabricated were found to lie in the range of 45 ± 2 μm. The experimental results verify that the diameter control strategies are effective and can be used to improve machining repeatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call