Abstract

The optical conductivity contains relevant information on the properties of correlated electron systems. In infinite dimensions, where dynamical mean field theory becomes exact, vertex corrections can be neglected and the conductivity computed from particle-hole bubbles. An interesting question concerns the nature and effect of the most relevant vertex corrections in finite-dimensional systems. A recent numerical study showed that the dominant vertex correction near an ordering instability with wave vector {\pi} comes from a vertical ladder, analogous to the Maki-Thompson diagram. Since the RPA version of this ladder diagram, dubbed {\pi}-ton, can be easily evaluated, this suggests a simple procedure for incorporating antiferromagnetic or charge density wave fluctuations into dynamical mean field estimates of the optical conductivity and related susceptibilities. We implement this procedure for the half-filled Hubbard model, considering the {\pi}-ton and a double-ladder extension of the {\pi}-ton, and reveal the spectral signatures of these vertex corrections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.