Abstract
We determine the decomposition numbers for the Brauer and walled Brauer algebras in characteristic zero in terms of certain polynomials associated to cap and curl diagrams (recovering a result of Martin in the Brauer case). We consider a second family of polynomials associated to such diagrams, and use these to determine projective resolutions of the standard modules. We then relate these two families of polynomials to Kazhdan–Lusztig theory via the work of Lascoux–Schützenberger and Boe, inspired by work of Brundan and Stroppel in the cap diagram case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.