Abstract

We realize (via an explicit isomorphism) the walled Brauer algebra Br,t(δ) for arbitrary integral parameter δ as an idempotent truncation of a level two cyclotomic degenerate affine walled Brauer algebra. The latter arises naturally in Lie theory as the endomorphism ring of so-called mixed tensor products, i.e. of a parabolic Verma module tensored with some copies of the natural representation and its dual. The result provides a method to construct central elements in the walled Brauer algebra, and also implies the Koszulity of the walled Brauer algebras if δ≠0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.