Abstract

In addition to main fractures, a large number of secondary fractures are formed after the volumetric fracturing of shale gas wells. The secondary fracture properties are so complex, that it is difficult to identify and diagnose by direct monitoring methods. In this study, a new approach to model and diagnose secondary fracture properties is presented. First, a new pressure decline model, which is composed of four interconnected domains, i.e., wellbore, main fractures, secondary fractures, and reservoir matrix pores, is built. Then, the fracturing fluid pumping and post-fracturing soaking processes are simulated. The simulated pressure derivatives reflect five fracture-dominated flow regimes, which correspond to multiple alternating positive and negative slopes of the pressure decline derivative. The results of sensitivity simulation show that the density, permeability, and width of secondary fractures are the main controlling factors affecting the size ratio. Finally, based on the simulated pressure decline characteristics, a diagnostic method for the identification and analysis of secondary fracture properties is formed. This method is then applied to three platform wells in the Changning shale gas field in China. This study builds the correlation between the secondary fracture properties and the shut-in pressure decline characteristics, and also provides a theoretical method for comprehensive post-fracturing evaluation of shale gas horizontal wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call