Abstract
The article presents the diagnostic results on surface-hardened industrial concrete floors. Selected examples of floors showcased premature damage to surface layers, characterized by intense dusting, delamination, and local spalling, while the structural system remained unaffected. Quantitative petrographic analysis of concrete was applied to core specimens from the floors, involving the examination of digital images from a polarizing optical microscope and a scanning electron microscope. The hardening compound and powdered specimens of the cement matrix were characterized using differential thermal analysis and X-ray diffraction. A multiple microindentation method was employed to assess local variations in mechanical properties. Concrete cross-section analysis revealed areas with a non-uniform distribution of air voids, identified regions exhibiting increased porosity, highlighted areas of cracking in the concrete, indicated local variability in the phase composition of cement hydration products, and pointed out the presence of carbonated areas. The causes of the damage were discussed based on these findings,. The crucial role of quantitative petrographic analysis in diagnosing premature surface damage to industrial floors was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.