Abstract
The noninvasive computed tomography angiography-derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%-90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland-Altman analysis revealed a direct correlation between the CT-FFR and FFR (p 0.001), without systematic differences (p = 0.085). The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have