Abstract
To review the existing literature to (1) determine the diagnostic efficacy of artificial intelligence (AI) models for detecting scaphoid and distal radius fractures and (2) compare the efficacy to human clinical experts. PubMed, OVID/Medline, and Cochrane libraries were queried for studies investigating the development, validation, and analysis of AI for the detection of scaphoid or distal radius fractures. Data regarding study design, AI model development and architecture, prediction accuracy/area under the receiver operator characteristic curve (AUROC), and imaging modalities were recorded. A total of 21 studies were identified, of which 12 (57.1%) used AI to detect fractures of the distal radius, and nine (42.9%) used AI to detect fractures of the scaphoid. AI models demonstrated good diagnostic performance on average, with AUROC values ranging from 0.77 to 0.96 for scaphoid fractures and from 0.90 to 0.99 for distal radius fractures. Accuracy of AI models ranged between 72.0% to 90.3% and 89.0% to 98.0% for scaphoid and distal radius fractures, respectively. When compared to clinical experts, 13 of 14 (92.9%) studies reported that AI models demonstrated comparable or better performance. The type of fracture influenced model performance, with worse overall performance on occult scaphoid fractures; however, models trained specifically on occult fractures demonstrated substantially improved performance when compared to humans. AI models demonstrated excellent performance for detecting scaphoid and distal radius fractures, with the majority demonstrating comparable or better performance compared with human experts. Worse performance was demonstrated on occult fractures. However, when trained specifically on difficult fracture patterns, AI models demonstrated improved performance. AI models can help detect commonly missed occult fractures while enhancing workflow efficiency for distal radius and scaphoid fracture diagnoses. As performance varies based on fracture type, future studies focused on wrist fracture detection should clearly define whether the goal is to (1) identify difficult-to-detect fractures or (2) improve workflow efficiency by assisting in routine tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.